3.5.41 \(\int \frac {\sqrt {a d e+(c d^2+a e^2) x+c d e x^2}}{x (d+e x)} \, dx\) [441]

Optimal. Leaf size=168 \[ \frac {\sqrt {c} \sqrt {d} \tanh ^{-1}\left (\frac {c d^2+a e^2+2 c d e x}{2 \sqrt {c} \sqrt {d} \sqrt {e} \sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}\right )}{\sqrt {e}}-\frac {\sqrt {a} \sqrt {e} \tanh ^{-1}\left (\frac {2 a d e+\left (c d^2+a e^2\right ) x}{2 \sqrt {a} \sqrt {d} \sqrt {e} \sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}\right )}{\sqrt {d}} \]

[Out]

arctanh(1/2*(2*c*d*e*x+a*e^2+c*d^2)/c^(1/2)/d^(1/2)/e^(1/2)/(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(1/2))*c^(1/2)*d
^(1/2)/e^(1/2)-arctanh(1/2*(2*a*d*e+(a*e^2+c*d^2)*x)/a^(1/2)/d^(1/2)/e^(1/2)/(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)
^(1/2))*a^(1/2)*e^(1/2)/d^(1/2)

________________________________________________________________________________________

Rubi [A]
time = 0.11, antiderivative size = 168, normalized size of antiderivative = 1.00, number of steps used = 6, number of rules used = 5, integrand size = 40, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.125, Rules used = {863, 857, 635, 212, 738} \begin {gather*} \frac {\sqrt {c} \sqrt {d} \tanh ^{-1}\left (\frac {a e^2+c d^2+2 c d e x}{2 \sqrt {c} \sqrt {d} \sqrt {e} \sqrt {x \left (a e^2+c d^2\right )+a d e+c d e x^2}}\right )}{\sqrt {e}}-\frac {\sqrt {a} \sqrt {e} \tanh ^{-1}\left (\frac {x \left (a e^2+c d^2\right )+2 a d e}{2 \sqrt {a} \sqrt {d} \sqrt {e} \sqrt {x \left (a e^2+c d^2\right )+a d e+c d e x^2}}\right )}{\sqrt {d}} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[Sqrt[a*d*e + (c*d^2 + a*e^2)*x + c*d*e*x^2]/(x*(d + e*x)),x]

[Out]

(Sqrt[c]*Sqrt[d]*ArcTanh[(c*d^2 + a*e^2 + 2*c*d*e*x)/(2*Sqrt[c]*Sqrt[d]*Sqrt[e]*Sqrt[a*d*e + (c*d^2 + a*e^2)*x
 + c*d*e*x^2])])/Sqrt[e] - (Sqrt[a]*Sqrt[e]*ArcTanh[(2*a*d*e + (c*d^2 + a*e^2)*x)/(2*Sqrt[a]*Sqrt[d]*Sqrt[e]*S
qrt[a*d*e + (c*d^2 + a*e^2)*x + c*d*e*x^2])])/Sqrt[d]

Rule 212

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1/(Rt[a, 2]*Rt[-b, 2]))*ArcTanh[Rt[-b, 2]*(x/Rt[a, 2])], x]
 /; FreeQ[{a, b}, x] && NegQ[a/b] && (GtQ[a, 0] || LtQ[b, 0])

Rule 635

Int[1/Sqrt[(a_) + (b_.)*(x_) + (c_.)*(x_)^2], x_Symbol] :> Dist[2, Subst[Int[1/(4*c - x^2), x], x, (b + 2*c*x)
/Sqrt[a + b*x + c*x^2]], x] /; FreeQ[{a, b, c}, x] && NeQ[b^2 - 4*a*c, 0]

Rule 738

Int[1/(((d_.) + (e_.)*(x_))*Sqrt[(a_.) + (b_.)*(x_) + (c_.)*(x_)^2]), x_Symbol] :> Dist[-2, Subst[Int[1/(4*c*d
^2 - 4*b*d*e + 4*a*e^2 - x^2), x], x, (2*a*e - b*d - (2*c*d - b*e)*x)/Sqrt[a + b*x + c*x^2]], x] /; FreeQ[{a,
b, c, d, e}, x] && NeQ[b^2 - 4*a*c, 0] && NeQ[2*c*d - b*e, 0]

Rule 857

Int[((d_.) + (e_.)*(x_))^(m_)*((f_.) + (g_.)*(x_))*((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_.), x_Symbol] :> Dis
t[g/e, Int[(d + e*x)^(m + 1)*(a + b*x + c*x^2)^p, x], x] + Dist[(e*f - d*g)/e, Int[(d + e*x)^m*(a + b*x + c*x^
2)^p, x], x] /; FreeQ[{a, b, c, d, e, f, g, m, p}, x] && NeQ[b^2 - 4*a*c, 0] && NeQ[c*d^2 - b*d*e + a*e^2, 0]
&&  !IGtQ[m, 0]

Rule 863

Int[((x_)^(n_.)*((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_))/((d_) + (e_.)*(x_)), x_Symbol] :> Int[x^n*(a/d + c*(
x/e))*(a + b*x + c*x^2)^(p - 1), x] /; FreeQ[{a, b, c, d, e, n, p}, x] && NeQ[b^2 - 4*a*c, 0] && EqQ[c*d^2 - b
*d*e + a*e^2, 0] &&  !IntegerQ[p] && ( !IntegerQ[n] ||  !IntegerQ[2*p] || IGtQ[n, 2] || (GtQ[p, 0] && NeQ[n, 2
]))

Rubi steps

\begin {align*} \int \frac {\sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}{x (d+e x)} \, dx &=\int \frac {a e+c d x}{x \sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}} \, dx\\ &=(c d) \int \frac {1}{\sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}} \, dx+(a e) \int \frac {1}{x \sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}} \, dx\\ &=(2 c d) \text {Subst}\left (\int \frac {1}{4 c d e-x^2} \, dx,x,\frac {c d^2+a e^2+2 c d e x}{\sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}\right )-(2 a e) \text {Subst}\left (\int \frac {1}{4 a d e-x^2} \, dx,x,\frac {2 a d e-\left (-c d^2-a e^2\right ) x}{\sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}\right )\\ &=\frac {\sqrt {c} \sqrt {d} \tanh ^{-1}\left (\frac {c d^2+a e^2+2 c d e x}{2 \sqrt {c} \sqrt {d} \sqrt {e} \sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}\right )}{\sqrt {e}}-\frac {\sqrt {a} \sqrt {e} \tanh ^{-1}\left (\frac {2 a d e+\left (c d^2+a e^2\right ) x}{2 \sqrt {a} \sqrt {d} \sqrt {e} \sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}\right )}{\sqrt {d}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]
time = 0.37, size = 167, normalized size = 0.99 \begin {gather*} -\frac {2 \sqrt {c} \sqrt {\frac {e}{c d}} \sqrt {a e+c d x} \sqrt {d+e x} \left (\sqrt {a} e \tanh ^{-1}\left (\frac {\sqrt {c} \left (-e x+\sqrt {\frac {e}{c d}} \sqrt {a e+c d x} \sqrt {d+e x}\right )}{\sqrt {a} e}\right )+\sqrt {c} d \log \left (-\sqrt {\frac {e}{c d}} \sqrt {a e+c d x}+\sqrt {d+e x}\right )\right )}{e \sqrt {(a e+c d x) (d+e x)}} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[Sqrt[a*d*e + (c*d^2 + a*e^2)*x + c*d*e*x^2]/(x*(d + e*x)),x]

[Out]

(-2*Sqrt[c]*Sqrt[e/(c*d)]*Sqrt[a*e + c*d*x]*Sqrt[d + e*x]*(Sqrt[a]*e*ArcTanh[(Sqrt[c]*(-(e*x) + Sqrt[e/(c*d)]*
Sqrt[a*e + c*d*x]*Sqrt[d + e*x]))/(Sqrt[a]*e)] + Sqrt[c]*d*Log[-(Sqrt[e/(c*d)]*Sqrt[a*e + c*d*x]) + Sqrt[d + e
*x]]))/(e*Sqrt[(a*e + c*d*x)*(d + e*x)])

________________________________________________________________________________________

Maple [B] Leaf count of result is larger than twice the leaf count of optimal. \(307\) vs. \(2(136)=272\).
time = 0.07, size = 308, normalized size = 1.83

method result size
default \(-\frac {\sqrt {c d e \left (x +\frac {d}{e}\right )^{2}+\left (a \,e^{2}-c \,d^{2}\right ) \left (x +\frac {d}{e}\right )}+\frac {\left (a \,e^{2}-c \,d^{2}\right ) \ln \left (\frac {\frac {a \,e^{2}}{2}-\frac {c \,d^{2}}{2}+c d e \left (x +\frac {d}{e}\right )}{\sqrt {c d e}}+\sqrt {c d e \left (x +\frac {d}{e}\right )^{2}+\left (a \,e^{2}-c \,d^{2}\right ) \left (x +\frac {d}{e}\right )}\right )}{2 \sqrt {c d e}}}{d}+\frac {\sqrt {a d e +\left (a \,e^{2}+c \,d^{2}\right ) x +c d e \,x^{2}}+\frac {\left (a \,e^{2}+c \,d^{2}\right ) \ln \left (\frac {\frac {1}{2} a \,e^{2}+\frac {1}{2} c \,d^{2}+c d e x}{\sqrt {c d e}}+\sqrt {a d e +\left (a \,e^{2}+c \,d^{2}\right ) x +c d e \,x^{2}}\right )}{2 \sqrt {c d e}}-\frac {a d e \ln \left (\frac {2 a d e +\left (a \,e^{2}+c \,d^{2}\right ) x +2 \sqrt {a d e}\, \sqrt {a d e +\left (a \,e^{2}+c \,d^{2}\right ) x +c d e \,x^{2}}}{x}\right )}{\sqrt {a d e}}}{d}\) \(308\)

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(1/2)/x/(e*x+d),x,method=_RETURNVERBOSE)

[Out]

-1/d*((c*d*e*(x+d/e)^2+(a*e^2-c*d^2)*(x+d/e))^(1/2)+1/2*(a*e^2-c*d^2)*ln((1/2*a*e^2-1/2*c*d^2+c*d*e*(x+d/e))/(
c*d*e)^(1/2)+(c*d*e*(x+d/e)^2+(a*e^2-c*d^2)*(x+d/e))^(1/2))/(c*d*e)^(1/2))+1/d*((a*d*e+(a*e^2+c*d^2)*x+c*d*e*x
^2)^(1/2)+1/2*(a*e^2+c*d^2)*ln((1/2*a*e^2+1/2*c*d^2+c*d*e*x)/(c*d*e)^(1/2)+(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(
1/2))/(c*d*e)^(1/2)-a*d*e/(a*d*e)^(1/2)*ln((2*a*d*e+(a*e^2+c*d^2)*x+2*(a*d*e)^(1/2)*(a*d*e+(a*e^2+c*d^2)*x+c*d
*e*x^2)^(1/2))/x))

________________________________________________________________________________________

Maxima [F(-2)]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Exception raised: ValueError} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(1/2)/x/(e*x+d),x, algorithm="maxima")

[Out]

Exception raised: ValueError >> Computation failed since Maxima requested additional constraints; using the 'a
ssume' command before evaluation *may* help (example of legal syntax is 'assume(c*d^2-%e^2*a>0)', see `assume?
` for more d

________________________________________________________________________________________

Fricas [A]
time = 2.54, size = 935, normalized size = 5.57 \begin {gather*} \left [\frac {1}{2} \, \sqrt {c d} e^{\left (-\frac {1}{2}\right )} \log \left (8 \, c^{2} d^{3} x e + c^{2} d^{4} + 8 \, a c d x e^{3} + a^{2} e^{4} + 4 \, \sqrt {c d^{2} x + a x e^{2} + {\left (c d x^{2} + a d\right )} e} {\left (2 \, c d x e^{2} + c d^{2} e + a e^{3}\right )} \sqrt {c d} e^{\left (-\frac {1}{2}\right )} + 2 \, {\left (4 \, c^{2} d^{2} x^{2} + 3 \, a c d^{2}\right )} e^{2}\right ) + \frac {1}{2} \, \sqrt {\frac {a}{d}} e^{\frac {1}{2}} \log \left (\frac {c^{2} d^{4} x^{2} + 8 \, a c d^{3} x e + a^{2} x^{2} e^{4} + 8 \, a^{2} d x e^{3} - 4 \, {\left (c d^{3} x + a d x e^{2} + 2 \, a d^{2} e\right )} \sqrt {c d^{2} x + a x e^{2} + {\left (c d x^{2} + a d\right )} e} \sqrt {\frac {a}{d}} e^{\frac {1}{2}} + 2 \, {\left (3 \, a c d^{2} x^{2} + 4 \, a^{2} d^{2}\right )} e^{2}}{x^{2}}\right ), \frac {1}{2} \, \sqrt {\frac {a}{d}} e^{\frac {1}{2}} \log \left (\frac {c^{2} d^{4} x^{2} + 8 \, a c d^{3} x e + a^{2} x^{2} e^{4} + 8 \, a^{2} d x e^{3} - 4 \, {\left (c d^{3} x + a d x e^{2} + 2 \, a d^{2} e\right )} \sqrt {c d^{2} x + a x e^{2} + {\left (c d x^{2} + a d\right )} e} \sqrt {\frac {a}{d}} e^{\frac {1}{2}} + 2 \, {\left (3 \, a c d^{2} x^{2} + 4 \, a^{2} d^{2}\right )} e^{2}}{x^{2}}\right ) - \sqrt {-c d e^{\left (-1\right )}} \arctan \left (\frac {\sqrt {c d^{2} x + a x e^{2} + {\left (c d x^{2} + a d\right )} e} {\left (2 \, c d x e + c d^{2} + a e^{2}\right )} \sqrt {-c d e^{\left (-1\right )}}}{2 \, {\left (c^{2} d^{3} x + a c d x e^{2} + {\left (c^{2} d^{2} x^{2} + a c d^{2}\right )} e\right )}}\right ), \frac {1}{2} \, \sqrt {c d} e^{\left (-\frac {1}{2}\right )} \log \left (8 \, c^{2} d^{3} x e + c^{2} d^{4} + 8 \, a c d x e^{3} + a^{2} e^{4} + 4 \, \sqrt {c d^{2} x + a x e^{2} + {\left (c d x^{2} + a d\right )} e} {\left (2 \, c d x e^{2} + c d^{2} e + a e^{3}\right )} \sqrt {c d} e^{\left (-\frac {1}{2}\right )} + 2 \, {\left (4 \, c^{2} d^{2} x^{2} + 3 \, a c d^{2}\right )} e^{2}\right ) + \sqrt {-\frac {a e}{d}} \arctan \left (\frac {{\left (c d^{2} x + a x e^{2} + 2 \, a d e\right )} \sqrt {c d^{2} x + a x e^{2} + {\left (c d x^{2} + a d\right )} e} \sqrt {-\frac {a e}{d}}}{2 \, {\left (a c d^{2} x e + a^{2} x e^{3} + {\left (a c d x^{2} + a^{2} d\right )} e^{2}\right )}}\right ), -\sqrt {-c d e^{\left (-1\right )}} \arctan \left (\frac {\sqrt {c d^{2} x + a x e^{2} + {\left (c d x^{2} + a d\right )} e} {\left (2 \, c d x e + c d^{2} + a e^{2}\right )} \sqrt {-c d e^{\left (-1\right )}}}{2 \, {\left (c^{2} d^{3} x + a c d x e^{2} + {\left (c^{2} d^{2} x^{2} + a c d^{2}\right )} e\right )}}\right ) + \sqrt {-\frac {a e}{d}} \arctan \left (\frac {{\left (c d^{2} x + a x e^{2} + 2 \, a d e\right )} \sqrt {c d^{2} x + a x e^{2} + {\left (c d x^{2} + a d\right )} e} \sqrt {-\frac {a e}{d}}}{2 \, {\left (a c d^{2} x e + a^{2} x e^{3} + {\left (a c d x^{2} + a^{2} d\right )} e^{2}\right )}}\right )\right ] \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(1/2)/x/(e*x+d),x, algorithm="fricas")

[Out]

[1/2*sqrt(c*d)*e^(-1/2)*log(8*c^2*d^3*x*e + c^2*d^4 + 8*a*c*d*x*e^3 + a^2*e^4 + 4*sqrt(c*d^2*x + a*x*e^2 + (c*
d*x^2 + a*d)*e)*(2*c*d*x*e^2 + c*d^2*e + a*e^3)*sqrt(c*d)*e^(-1/2) + 2*(4*c^2*d^2*x^2 + 3*a*c*d^2)*e^2) + 1/2*
sqrt(a/d)*e^(1/2)*log((c^2*d^4*x^2 + 8*a*c*d^3*x*e + a^2*x^2*e^4 + 8*a^2*d*x*e^3 - 4*(c*d^3*x + a*d*x*e^2 + 2*
a*d^2*e)*sqrt(c*d^2*x + a*x*e^2 + (c*d*x^2 + a*d)*e)*sqrt(a/d)*e^(1/2) + 2*(3*a*c*d^2*x^2 + 4*a^2*d^2)*e^2)/x^
2), 1/2*sqrt(a/d)*e^(1/2)*log((c^2*d^4*x^2 + 8*a*c*d^3*x*e + a^2*x^2*e^4 + 8*a^2*d*x*e^3 - 4*(c*d^3*x + a*d*x*
e^2 + 2*a*d^2*e)*sqrt(c*d^2*x + a*x*e^2 + (c*d*x^2 + a*d)*e)*sqrt(a/d)*e^(1/2) + 2*(3*a*c*d^2*x^2 + 4*a^2*d^2)
*e^2)/x^2) - sqrt(-c*d*e^(-1))*arctan(1/2*sqrt(c*d^2*x + a*x*e^2 + (c*d*x^2 + a*d)*e)*(2*c*d*x*e + c*d^2 + a*e
^2)*sqrt(-c*d*e^(-1))/(c^2*d^3*x + a*c*d*x*e^2 + (c^2*d^2*x^2 + a*c*d^2)*e)), 1/2*sqrt(c*d)*e^(-1/2)*log(8*c^2
*d^3*x*e + c^2*d^4 + 8*a*c*d*x*e^3 + a^2*e^4 + 4*sqrt(c*d^2*x + a*x*e^2 + (c*d*x^2 + a*d)*e)*(2*c*d*x*e^2 + c*
d^2*e + a*e^3)*sqrt(c*d)*e^(-1/2) + 2*(4*c^2*d^2*x^2 + 3*a*c*d^2)*e^2) + sqrt(-a*e/d)*arctan(1/2*(c*d^2*x + a*
x*e^2 + 2*a*d*e)*sqrt(c*d^2*x + a*x*e^2 + (c*d*x^2 + a*d)*e)*sqrt(-a*e/d)/(a*c*d^2*x*e + a^2*x*e^3 + (a*c*d*x^
2 + a^2*d)*e^2)), -sqrt(-c*d*e^(-1))*arctan(1/2*sqrt(c*d^2*x + a*x*e^2 + (c*d*x^2 + a*d)*e)*(2*c*d*x*e + c*d^2
 + a*e^2)*sqrt(-c*d*e^(-1))/(c^2*d^3*x + a*c*d*x*e^2 + (c^2*d^2*x^2 + a*c*d^2)*e)) + sqrt(-a*e/d)*arctan(1/2*(
c*d^2*x + a*x*e^2 + 2*a*d*e)*sqrt(c*d^2*x + a*x*e^2 + (c*d*x^2 + a*d)*e)*sqrt(-a*e/d)/(a*c*d^2*x*e + a^2*x*e^3
 + (a*c*d*x^2 + a^2*d)*e^2))]

________________________________________________________________________________________

Sympy [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {\sqrt {\left (d + e x\right ) \left (a e + c d x\right )}}{x \left (d + e x\right )}\, dx \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a*d*e+(a*e**2+c*d**2)*x+c*d*e*x**2)**(1/2)/x/(e*x+d),x)

[Out]

Integral(sqrt((d + e*x)*(a*e + c*d*x))/(x*(d + e*x)), x)

________________________________________________________________________________________

Giac [F(-2)]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Exception raised: TypeError} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(1/2)/x/(e*x+d),x, algorithm="giac")

[Out]

Exception raised: TypeError >> An error occurred running a Giac command:INPUT:sage2:=int(sage0,sageVARx):;OUTP
UT:Error: Bad Argument Type

________________________________________________________________________________________

Mupad [F]
time = 0.00, size = -1, normalized size = -0.01 \begin {gather*} \int \frac {\sqrt {c\,d\,e\,x^2+\left (c\,d^2+a\,e^2\right )\,x+a\,d\,e}}{x\,\left (d+e\,x\right )} \,d x \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((x*(a*e^2 + c*d^2) + a*d*e + c*d*e*x^2)^(1/2)/(x*(d + e*x)),x)

[Out]

int((x*(a*e^2 + c*d^2) + a*d*e + c*d*e*x^2)^(1/2)/(x*(d + e*x)), x)

________________________________________________________________________________________